Compensating \& Equivalent Variations, Substitution \& Income Effects

Yannis Galanakis
I.Galanakis@kent.ac.uk

First Draft: October 2019
Current Version: October 2020

Figure 1: Suppose a consumer has preferences of the form $U(x, y)=x^{0.5} y^{0.5}$. The price of good y is 1 and the price of good x changes from 1 to 2 . The consumer has income $m=8$. Assuming the consumer is utility maximizing, calculate the Compensating Variation and Equivalent Variation of the price change. Finally, decompose the total change in demand for good x into a substitution effect and an income effect.

Figure 1:
e_{0} : initial equilibrium
e_{1} : final equilibrium (after price of x increases)

$$
\begin{aligned}
& e_{2}: \mathrm{CV} \text { adjustment } \\
& e_{e}: \mathrm{EV} \text { adjustment }
\end{aligned}
$$

Figure 2: Consider the utility function $U(x, y)=x^{0.5}+y$. Suppose that income $m=4$, the price of good y is 1 and the price of good x is 0.25 . If the price of $\operatorname{good} x$ changes from 0.25 to 0.5 , calculate the Compensating Variation and Equivalent Variation of the price change, and decompose the total change in demand for good x into a substitution effect and an income effect.

Total Effect

Figure 2:
e_{0} : initial equilibrium
e_{1} : final equilibrium (after price of x increases)
e_{2} : CV adjustment
e_{e} : EV adjustment

